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The stepwise multiple linear regression technique has been used to analyze the single- 
particle energies of neutrons and protons in nuclei along the line of beta stability. Their 
regular and systematic trends lead to semiempirical model-independent formulas for 
single-particle energies of neutrons and protons in the bound nuclei as functions of nuclear 
parameters A and Z for given states specified by nl, These formulas are almost as con- 
venient as the harmonic oscillator energy formulas to use. The single-particle energies 
computed from these formulas have been compared with the experimental data and are 
found in reasonable agreement. 

1. INTRODUCTION 

A computational method based on stepwise multiple linear regression technique 
is presented for generating formulas for nuclear single-particle separation energies. 
This work primarily concerns the application of computers to nuclear physics. 
A statistical computer program [l] has been used to obtain an analytical expression 
in a closed form for single-particle energies as a function of nuclear parameters 
A, 2, n, I and j. The single-particle energies can be defined as the centers of gravity 
of the fragments (generally, they are fragmented by some residual interactions), 
weighted by the spectroscopic factors. 

The extensive and useful information on the energies of the single-particle states 
has accumulated from many investigations with quasi free scattering and nucleon 
transfer and knockout reactions. In several theoretical efforts, various models have 
been used to obtain the energy levels of nuclei along the line of beta stability [2-121. 
These works and others, specifying some procedure for calculating the nuclear single- 
particle states, yield information about many features of nuclear structure, for which 
it may be desirable to see to what extent their predictions show a systematic behavior 
through the periodic table in correlating energies of the bound single-particle states. 
Of course such a study cannot be concerned with the details of the fragmentation of 
the single-particle states, at least at the present time, for these are peculiar to each 
nucleus and thus would not be expected to show any systematic behavior. It is only 
the centroid energies that might show such behavior (although even for them it is 
quite possible that the differences in structure from one nuclide to the other might be 
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sufficient to destroy it). Taking the macroscopic view of the experimental data and 
calculated values of the centroid energies of single-particle states of neutrons and 
protons, one may, in general, observe a regular pattern followed by these energies. 

To describe these patterns exactly by some simple formula [13] would be desirable 
from the point of view of its utility. Such a formula or formulas would be more 
convenient to use, for example, as an energy guess for calculations involving energy- 
dependent potentials [2]. 

The stepwise multiple linear regression analysis used in this work is briefly discussed 
in the following section. The regression analysis is a means of making an estimation 
of the value of one variable from the values of other given variables. In other words, 
regression analysis enables the effects of various factors to be evaluated from the data 
even when the data do not follow a simple pattern, or when the variables affecting the 
results cannot be controlled in such a manner as to make possible a designed experi- 
ment. [ 141 The description of the computation technique is given in Section 3. 

2. STEPWISE MULTIPLE LINEAR REGRESSION TECHNIQUE 

In some problem several variables are studied simultaneously to see how they are 
interrelated; in others there is one particular variable of interest, and the remaining 
variables are studied for their aid in throwing light on this particular variable. The 
latter class of problem is usually associated with a statistical technique called 
regression. Methods for dealing with problems of predicting one variable by means of 
several other variables, rather than by means of just one other variable such that 
the functional relation of the predicted variable with others is linearly dependent are 
called multiple linear regression methods. For example, if we were to predict the 
variable E in terms of variables x1 , x2 , xg ,..., x, the problem would become one of 
best fitting equations 

E=a,+a,x,+a,x,+**-+a,~,, (1) 

in the sense of least squares, to a scatter diagram of points in n + 1 dimensions. 
The problem is one of estimating the coefficients a,, a,, a2 ,..., a, by the method of 
least squares. This is done by mathematical methods in the same way as, for example, 
linear regression. It turns out that the least-squares values of a, , a, ,..., a, are obtained 
by solving the n + 1 linear equations. Explicitly the equation 

p=wv+ aJx1+ aJx,+-.+a,Cx, 
N N N N 

0) 

and other n equations of the type 

1 -GE = 1 aOxi + ~1 C xlxi + -a* + a, C xi2 + *.. + a, C xix,, (3) 
N N N N N 

where i = 1, 2,..., n, are solved simultaneously to yield the coefficients a, , a, ,..., a, ; 
and N is the number of data points. In the idea1 situation the choice of the type and 
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number of variables x’s and the calculation of the coefficients a’s must be such that 
the values of E’s calculated from Eq. (1) must be identical to the corresponding values 
of E used as input data for such analysis. This can be tested by calculating the multiple 
correlation coefficient R which is the positive value of the square root of the quantity 
R2 given by 

. R2 = 5 (& - 02/f (Ei - Q2 
i=l i=l 

where the ,!?i are calculated from Eq. (1) and the Ei are the input data, and E is the 
average value of Ei = ((l/N) CL, EJ. For the ideal case, the value of R must be 
unity. In order to limit the number of variables x’s to a reasonable number (such that 
R > 0.9) a stepwise multiple linear regression technique may be used in the analysis. 
This technique provides a method which adds one variable at a time to the regression 
equation in such a manner that the added variable is the most significant one among 
those not already in the regression equation. 

3. COMPUTATIONAL PROCEDURE 

The semiempirical formulas for single-particle energies are generated in terms of 
the nuclear parameters A, Z, n, I, and j by the stepwise multiple linear regression 
analysis. The variables x’s occurring in Eq. (1) are linear. They correspond to various 
combinations of the nuclear parameters mentioned above. A certain number of 
combinations of nuclear parameters is formed by some physical and/or intuitive 
considerations. Others have been used just on a trial-and-error basis. For example, 
a constant term and A-lj3 are strongly suggested by mass formula. Similarly, the 
harmonic oscillator energy formula [2(n - 1) + I + %] fiw leads to the inclusion 
of terms like A-1/3, PV-‘/~, and L4-1/3. The spin-orbit doublet splitting proportional to 
1(1+ 1) suggests the inclusion of a term like j(j + 1) A-2/3. Terms proportional to 
A-l and A-5/3 may be expected to be due to the consideration of pairing energy and 
deformation effects, respectively, if the input data are to have some effects of that 
nature. The terms discussed above serve merely as guidelines for constructing possibly 
relevant terms. It is not necessarily expected that each of the above terms will appear 
in the resulting formulas, but combinations of similar terms may appear. Besides 
these terms, many other terms have been constructed and treated as linear variables 
x’s. Such terms are limited to a total number of 80 variables, which is a sufficiently 
large number to account for all the possible nuclear parameters and their various 
combinations [I, 151. Let these variables be denoted by n. This program computes 
a sequence of multiple linear equations in a stepwise manner. That is, at each step 
one variable is added to the regression equation. The variable added is the one which 
has the highest partial correlation with the difference in the dependent variable and 
the regression equation. In other words, it is the variable which, if it were added, 
would have the highest F-value, where the F-value has the F-distribution defined and 
computed later on. After a reasonably complete set of variables has been generated, 
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the problem is to find the coefficients of the significant variables. Coefficients for the 
most significant terms are computed first, followed by the next most significant terms 
in descending order of significance. The coefficients (including the constant term, a,,) 
are reevaluated on the addition of each term until there are no more variables left, 
or until the significance of the remaining variables is below some specified value. 

Sincle-particle energies of neutrons and protons in nuclei along the beta stable 
line and within the range 10 < A < 300 have been used as the input data in this 
regression analysis. These values were taken from the occupied states up to the Fermi 
level including 352 states for neutrons and 250 states for protons [2]. Each state of 
nuclei considered contributes one data point to the statistical program. Let these 
data points be called the number of cases and be denoted by N. These N cases are 
simply the input energy values used to generate the formulas in question consisting of 
a reasonable number of terms selected from a total number of n variables stored in 
the program. For the sake of convenience the computational procedure is divided 
into six stages in the order in which they appear. 

Stage 1 primarily constructs a matrix from the input data. Let xK1 be the value of 
the Ith variable for the kth case whose mean is computed from its definition 

j = 1) 2,. ..) n, 

and a matrix A whose elements are given by 

aij = f (xkj - xj)(xkj - ?,), i,.j = I, 2 ,..., n, (6) 
k=l 

is constructed. 
In Stage 2, from the matrix A thus constructed the quantities, namely, covariance 

sij , standard deviations si , and correlation rij , are computed from their following 
respective definitions for the whole population: 

1 
Sii = ~--l aii , i,j=1,2 ,..., n, (7) 

Sj = (Sj.j)liz, (8) 

and 

sij rij = - , i,.j = 1, 2 ,..., n 
( 

aji 
sjsj = (qi@/2 1 . (9) 

Stage 3 deals with each step in the stepwise regression procedure. The total number of 
variables n are divided into two disjoint sets. The first set consists of the independent 
variables being used in the regression equation in that particular step. They are 
designated by 

xil 7 xi2 Y...T Xi* . 
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The other set consists of the remaining variables including the dependent variable. 
(The dependent variable in this work is the energy, E = xd , calculated by the regres- 
sion formula for the step in progress.) Let this set of variables be denoted by 

xjl 9 Xi2 P***Y xjz, - 

For the purpose of exposition assuming the set xi1 , xi2 ,..., xiq as the first q variables 
of the total IZ, the regression equation at a typical step then has the form: 

E = a, + alxl + a2x2 + *a* + a,x, . (10) 

Next a partition matrix A given by 

is constructed where A,, is a q x q matrix and thus another matrix B with elements 
bii is computed as 

(12) 

Since q independent variables have been used in this typical regression equation 
(10) the residual degrees of freedom df is thus given by 

df=N-q-l (13) 

and the regression degrees of freedom q is denoted by 

q=rdJ: (14) 

For this step and similarly for each step in the stepwise procedure the following 
quantities are defined, computed and stored: 

For the residual degrees of freedom the sum of squares and the mean square are 
given by: 

and 
SS = bdd , 05) 

MS = i!? = bdd 
df N-q-l’ 

respectively. 
For the regression degrees of freedom, the sum of squares 

are given by: 

and 

RSS = add - b,, , 

RMS - z - add - bdd 4 

(16) 

and the mean square 

(17) 

(18) 

respectively. 
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From these terms, the F-value, the standard error of estimate, and the multiple 
correlation coefficient are computed, which are given by: 

F=RMS ~ add -bdd N-q-l -~-~ 
MS b dd 4 ’ 

(19) 

s = (MS)l~2, PO) 

and 

R = ($!?I”’ = (1 - z)1’2, (21) 

respectively. 
In Stage 4 for each independent variable xi in the regression equation, the regression 

coefficient, its standard error, and F-value are computed. They are defined as: 

ai = bid and a, = C a& , 
i=l 

(22) 

and 

respectively. 

Sj = S(bii)‘/2, 

Fi = (ai/SJ2, 

(23) 

(24) 

Stage 5 deals with each remaining independent variable xi not included in the 
regression equation and computes for each of the variables the tolerance level, partial 
correlation coefficient, and F-value given by: 

and 

F, = b%(N - q - 2) z biib,, - bfd ’ (27) 

respectively. 
The last stage, namely, Stage 6, actually executes a sequence of multiple linear 

regression equation in stepwise manner which are given in the Appendix A. In going 
from one step to the next an independent variable is added to or removed from the 
regression equation automatically until the final formula is obtained. In addition, 
variables can be forced into the regression equation if desired. In that case nonforced 
variables (i.e., free variables) are automatically removed according to the criteria 
set up for adding to and removing from the regression equation when moving from 
one step to the next. This movement is governed by the following three rules: 
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(i) If there are one or more independent variables in the regression equation 
that are not forced and whose F-value is less than the “F-to-remove” value specified 
in the input, the one with the least F-value will be removed. 

(ii) If no variable is removed by (i) and there are one or more independent 
variables not in the regression equation which pass the tolerance test and are forced 
variables, the one with the highest forcing value and the highest F-value among all 
with the same forcing value will be added. 

An independent variable xi not in the regression equation is said to pass the tolerance 
test if its tolerance value Ti is greater than or equal to the “minimum tolerance value” 
specified in the input. 

(iii) If no variable is removed by (i) or added by (ii) and there are one or more 
independent variables not in the regression equation which pass the tolerance test, 
are free variable, and have an F value greater than or equal to the “F-to-enter” value 
specified in the input, the one with the highest F-value will be added. 

If no variable is added or removed by any one of the above three rules, the step- 
wise procedure is terminated yielding the final formula. These formulas are given by 
Eqs. (28) and (29) for single-particle energies of neutron and proton with their respec- 
tive multiple correlation coefficients in the following section. 

4. RESULTS 

Following the procedure, the stepwise multiple linear regression analysis, outlined 
in the preceding section, compact regression formulas are obtained readily with 
significantly large values of multiple correlation coefficients, R (very close to unity), 
and with a relatively small number of variables out of a large number generated from 
the nuclear parameters. In fact, the value of R goes immediately, to more than 0.9 
as soon as a proper combination of n, I, and A is included in the regression formulas. 
Some of the formulas for the single-particle energies for the occupied states of neutrons 
and protons are presented in the order of increasing R in the Appendix A. The 
formulas used for calculating the single-particle energies for neutrons and protons 
given in Table I and producing Figs. 1 and 2 are given here: 

E,(n) = -94.905 + 70.8361/A113 + 89.992n/A113 + 17.956n 

- 18.037j(j + 1)/A”/” - 2.573n2 + 43.2901(1 + 1)/A, 

R,(n) = 0.9938; (28) 

E,(p) = -100.515 + 82.551f/A1/3 + 30.147n + 58.962n/A113 

- 17.741j(j + 1)/A2j3 - 3.722n2 + 39.649Z/A4/3, 

R,(p) = 0.9961. (29) 
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TABLE I 
Single-Particle Energies (MeV) for Neutrons and Protons in Some Finite Nuclei” 

State Input 

Neutrons 

Calc Expls Input 

Protons 

Calc Exp - 

46.76 45.94 
19.52 20.94 
12.54 12.41 

47.00 44.94 
22.00 18.89 
15.70 11.77 

51.47 
28.07 
23.33 
12.91 

45.15 44 * 76 
21.35 19.1 * 1.4* 
13.06 12.7 f 1.4b 

55.51 
31.12 
26.34 
15.45 

14.26 

52.52 
32.87 
27.50 
14.09 
5.14 

13.93 11.92 

51.23 
30.50 
25.28 
13.26 
4.55 

12.05 

57.93 54.36 52.99 52.77 

34.78 36.11 30.76 33.18 

30.74 31.49 26.73 28.68 
19.57 18.78 21.30 16.03 16.59 

16.78 17.81 18.10 13.98 15.31 

12.02 11.07 15.80 8.47 9.09 

57.70 55.29 55.66 53.55 
35.59 37.73 33.52 34.55 
31.99 33.45 29.89 30.39 
20.87 21.09 18.87 18.32 
18.16 19.75 16.43 16.94 

13.93 13.96 11.90 11.38 
7.66 5.39 5.59 4.86 

56.32 55.78 58.91 53.96 
34.87 38.58 36.53 35.28 
31.68 34.49 33.07 31.29 
20.70 22.31 21.63 19.25 
17.45 20.78 18.65 17.81 
14.32 15.49 14.95 12.61 
7.83 6.97 8.19 5.88 

- 
p 29.7 + 6.1?* 

16.2 * 1.6” 
13.3 & 1.6b 
9.5 f 1.4” 

49.1 + 12Q 
58.4 & 3.4”, 56” 

77 * 14d 
33.3 * 6.5” 

p 35.1 h 0.6” 
32.4 + 4d 
14.9 f 2.5” 
19.0 * 1.1” 
13.8 + 7.5” 
10.6 & 1.1” 
14.4 * 0.3” 
12.1 & 5.4” 
8.4 h 0.5” 

10.9 + 0.7” 
7.7 f- 2.6d 

53.6 * 8.gc 
~34.9 * 8’ 

d 26.9 i 8.9” 
13.2 5 5.4” 
12.1 f 1” 
11.87’ 
11.17’ 

15.81” 
16.178 

(Table continued) 
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State 

Neutrons Protons 

Input Calc Exp” Input Calc EXP 

61.73 57.18 56.26 55.12 

40.00 40.99 35.46 37.35 
37.19 37.38 32.43 33.84 
25.89 25.73 21.60 21.92 
21.33 23.69 18.07 20.26 

20.08 19.71 
12.90 11.38 
9.74 7.51 

15.57 
8.76 

16.07 
8.84 
2.49 

63.86 
44.89 
43.00 
32.31 
27.03 
28.22 
20.61 
15.12 
13.64 
13.19 
9.50 

60.11 
46.04 
43.34 
32.80 
29.80 
28.31 
20.39 
15.72 13.1’ 
14.11 12.6’ 
13.03 13.50’ 

8.82 
0.74 
2.48 
4.62 

60.26 
40.97 
38.94 
28.30 
22.84 
23.92 
16.30 
10.70 
8.96 
8.73 

57.59 
41.82 
39.20 
27.81 
25.41 
23.44 
15.54 
9.64 
9.42 
7.02 
5.02 

65.56 61.83 62.21 59.03 
47.73 48.97 44.54 44.49 
46.40 46.75 42.98 42.33 
36.24 36.38 32.44 31.39 
29.43 33.35 27.00 28.41 

56.24 54.34 
39.37 39.95 
35.44 32.13 
23.44 20.11 

21.73 18.61 

16.88 

8.42 
4.87 

13.74 

6.83 

59.8 + 3.2” 
p 40.4 zk 0.7” 

21.4 + 2.5+b 
19.5 + 0.2” 
13.6 5 0.5” 
15.1 & 0.2” 
13.49h 
15.7 f 1.8” 
14.26” 
11.8 & 0.9* 
10.3 It 1.1” 

57.3 & 7.56 
63.7” 

p 37.6 5 7.9” 
p 43.8” 
d 20.2 & 9.gb, 20.9” 

12.6 + 6.3” 14.7* 
11.19’ph 

11.72fsh 
10.1 & 5.6Q9.3” 

8.80’ 

54.0 + 8.1 ?” 
p 40.2 h 7.2?” 

d 30.0 It 6.9” 
29.0 k 6.8” 

- 
(Table continued) 
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TABLE I (continued) 

Neutrons Protons 

Calc ExplZ - Input Calc EXP 

33.33 
18.89 
17.32 
25.41 
20.40 
14.86 
7.32 

10.30 
7.64 
9.80 

33.17 29.10 
20.49 
18.27 
25.54 
20.35 
14.97 
8.29 
8.39 
4.69 

10.01 
5.15 

14.34 
12.51 
21.22 
15.26 
10.09 

69.04 64.72 63.03 
53.16 53.89 48.31 
52.43 52.35 47.38 
43.54 43.67 38.05 
36.52 39.29 31.96 
41.88 41.10 35.96 
34.34 34.06 28.24 
31.34 30.46 24.46 
26.35 28.46 20.01 
25.62 26.92 18.55 
25.35 25.07 18.53 
20.76 20.44 12.53 
18.24 18.24 11.04 
16.44 16.68 8.72 
16.47 15.67 8.54 
16.15 19.01 10.75 

9.75 1 I .03 10.70 
10.59 8.64 9.50 
7.57 8.91 8.90 
9.77 8.18 8.20 
7.87 5.04 7.80 
8.92 6.64 7.30 

27.79 
13.87 2p 16 jl 6.3’ 
11.70 
19.74 
14.69 j+g 16 rt 6.8” 
9.52 

61.45 
49.05 
47.55 
37.64 
33.42 
35.14 
27.24 
23.74 
21.02 
19.52 
17.83 
13.33 11.45’ 
9.61 9.65’ 
9.42 9.3(y” 
7.11 8.3@ 

11.30 7.95’i 
9.0 

3.92 3.Sk 

2.01 2.2k 
+1.11 0.51 

0.8 

0 Question marks indicate uncertainty in level assignments. 
b Quoted in Ref. [21]. 
c Reference [22]. 
d Reference [23]. 
e Quoted in Ref. [24]. 
f Reference [25]. 
g Reference [26]. 
h Quoted in Ref. [25]. 
( Reference [27]. 
j Reference [28]. 
L Quoted in Ref. [18]. 
z Quoted in Ref. (201. 
m Reference [29]. 
n Reference [30]. 
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FIG. 1. Single-particle energies of neutrons computed from the semiempirical formula (28) for 
E(n) show a systematic variation as the mass number A varies. Subscripts to symbols for I refer to 
twice the values of j. 

FIG. 2. Single-particle energies of protons computed from the semiempirical formula (29) for 
E(p) show a systematic variation as the mass number A varies. Subscripts to symbols for 2 refer to 
twice the values of j. 



76 LODHI AND WAAK 

These formulas correspond to Eqs. (A1.6) and (A2.6), respectively, in Appendix A 
and have MeV units for energies. The last three formulas for E(n) and E(p) in 
Appendix A for which the value of R > 0.99 include the most significant nuclear 
parameters A, II, I, j in the expected combinations. On increasing the number of 
variables in the regression formulas beyond the number already in (28) and (29) 
the variation in the energy calculated from those formulas is insignificantly small. 
Such a precision is not desirable at this stage because of the lack of observed 
data available against which it could be tested and because of the large uncertainties 
involved in the presently available experimental data. If the number of terms were 
increased the formulas would become too unwieldy without increasing the value of R 
significantly. However, the truncation at this stage does not exhibit the effects due 
to pairing, deformation, etc., explicitly. These features may, however, be understood 
as being reflected in the values of the coefficients of the regression formulas. If the 
regression analysis is allowed to continue until all the variables fed in are used one will 
get all those terms representing directly such effects. This would simply increase the 
number of terms in the formulas without increasing any significant accuracy. Hence, 
in order to keep the formulas reasonably compact, the process should be stopped 
after an acceptable value of R (say, 0.9900-0.9990) is reached. In this analysis Eqs. (28) 
and (29) yield reasonably acceptable values of neutron and proton energies and also 
give the values of R greater than 0.99. It is desirable to truncate these formulas at 
this stage. 

Examining the progression of the formulas given in Appendix A, namely, (Al.l) 
to (Al.6) and (A2.2) to (A2.6) for single-particle energies of neutron and proton, 
respectively, one finds a good deal of physical significance. It is, therefore, worth 
commenting here, rather than in Appendix A, on the structure of these formulas. 
The harmonic oscillator potential has been widely used in the shell model calculations, 
perhaps because of its simple treatment and also because of its close resemblance to 
the actual single-particle potential. Any deviation of a single-particle potential from 
the harmonic oscillator potential can be treated as a perturbation to the harmonic 
oscillator [16]. In other words, it can be shown that any single-particle potential can, 
in principle, be treated as a superposition of harmonic oscillator potentials [17]. 
This feature is reflected in the progression of the formulas in Appendix A. The first 
terms are considerably smaller in Eqs. (Al .I) and (A2.1) than in the remaining 
formulas. The corresponding correlation coefficients are also significantly smaller for 
the first formulas for the neutron and the proton. This is what one would naively 
expect, since the volume of the nucleus tends to increase the binding energy, as in the 
mass formula in the liquid-drop model, whereas the higher orbital states have 
decreasing energies. If we were to consider the single-particle energies based on its 
volume (i.e., the mass number A) and orbital quantum number 1, the only results 
that would be significantly wrong would be those exhibiting low values of R. However, 
should the principal quantum number n be included, then the results are expected 
to improve significantly, as is obvious by the large values of R in formulas (A1.2) 
and (A2.2). These two formulas depend on A, n, and I, like the formula in the case 
of the harmonic oscillator in which the single-particle energy is ((1 + $) fro or 
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[2(n - 1) + 1 + +] fiw if (1 = 2n + 1 - 2. Formulas (A1.2) and (A2.2) should not 
be expected to give better results than the corresponding harmonic oscillator energy 
formula. In fact the difference in results of the second and third formulas should not be 
very significant as they both depend on the same number of parameters. This is evi- 
denced from the values of R corresponding to these formulas. The additional n-depen- 
dent term is a slight perturbation to the harmonicity. There is also a difference 
in the order of appearance of nA-li3- and n-terms in formulas (A1.2, 3) and (A2.2, 3). 
The latter formulas belong to the proton, where the Coulomb correction manifests to 
the harmonic oscillator at the outset. The next major correction to the harmonic 
oscillator description is expected to be due to the spin-orbit interaction which appears 
in E,(n,p). Allowing more terms in E5 and Es means including further perturbation 
(perhaps due to asymmetry, pairing effects, Coulomb potential, centrifugal term, 
etc.). Picturing the perturbation to the harmonic oxcillator, one would expect the 
correction to the energy by terms proportional to n2[16], which appears in E5 . 
Considering EB , again neutron and proton formulas differ. Whereas the neutron 
formula, E,(n), prefers to exhibit the effect due to centrifugal force proportional to 
1(1+ I), in the proton formula, E,(p), the Coulomb force proportional to 2 appears 
explicitly in preference to the Z(1+ 1) term. Overall, formulas E&z, p) give a reasonable 
agreement with the observed data. Although the input data for the structure of these 
formulas was taken only from the occupied states of neutrons and protons, there are 
several interesting qualitative features of hole states which are apparant from Figs. 1 
and 2 when these curves are projected. For example, an abnormally large spin-orbit 
doublet splitting occurs in cases where the j = I + & level is a particle state, while 
the j = I - & level is a hole state. For tush cases, the doublet splittings of neutrons 
and protons are in reasonably good agreement with the experiment [ 181. In any 
one major shell the slopes of the level curves with smaller nodal numbers are 
steeper. In particular, the single-node levels Id, lf, etc., are appreciably steeper 
than the other members of their shell, as is observed experimentally and is also 
concluded by other theoretical works [19, 201. The nuclear systematics shown 
by formulas (28) and (29) arise from the input data, which are in turn derived 
from nuclear forces. The salient features of nuclear forces are thus inherited by 
these formulas from the input data. Hence, while these formulas are simple to use 
they have physical significance as far as the centroid energies of single particles 
in nuclear physics are concerned and exhibit the gross properties of nuclear 
forces. 

Formulas (28) and (29) and the formulas in Appendix A were obtained when there 
was no preference for one variable over another. The program itself selects the variable 
which is most significant. However, a certain variable can be forced to appear with 
some priority. It turns out that if any number of variables is forced to appear in the 
formula with some priority then the resulting formula is no different from the one 
obtained without any bias as long as eventually the numbers of terms appearing in 
both formulas are identical. As an example of this effect two variables n(1 + A-lj3) 
and IA-II3 were forced to appear in the regression formula soon after the constant 
term and after that the program could choose the variables according to its own 
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ordering. The resulting formula, having the same number of terms as Eq. (28), can 
be written as 

E(n) = -94.202 + 17.951n(l + 1/N3) + 70.8381/A1j3 

+ 72.049r~/A~/~ - 18.038j(j + 1)/A”/” 

= -94.902 + 70.838Z/A1/3 + 90.0OOr~/A~/~ 

+ 17.9.51n - 18.038j(j + 1)/A”/” - 2.572n2 

+ 43.3851(1 + 1)/A, 

which is almost identical to Eq. (28) and its corresponding value of R is the same that 
belonging to Eq. (28). The energies calculated from these two equations have almost 
identical values and certainly cannot be distinguished on the scale on which Fig. 1 
is drawn. Figures 1 and 2 represent the single-particle energies obtained using formulas 
(28) and (29) for neutrons and protons, respectively. Some of the single-particle 
energies of neutrons and protons have been compared with the experimental and 
input data [2] in Table 1. The results of this work that enter this table have been 
obtained from Eqs. (28) and (29) with their corresponding values of R equal to 
0.9938 and 0.9956. These numbers are large enough to obtain the output values of 
E(n) and E(p) computed from Eqs. (28) and (29), respectively, to match the input data 
closely, which in fact is observed in Table I. 

5. DISCUSSION AND CONCLUSION 

The constant terms of Eqs. (28) and (29) place the energies at a very negative value. 
The next three terms (+l/A’l”, +n, and +n/A1j3) can be attributed to harmonic 
oscillator effects and give the required increase (decrease in magnitude) in energy as 
n and/or 1 increase and the necessary decrease in energy as A increases. The term 
-j( j + 1)/A2j3 gives the spin-orbit splitting proportional to 21+ 1, exhibiting the 
proper doublet sequence, and also shows the reduced spin-orbit effect as A increases. 
The FP term illustrates a slight nonlinearity in the principal quantum number [16]. 
The 1(1+ 1)/A term in Eq. (28) accounts for a residual effect in the orbital angular 
momentum not taken care of by the Z/All3 term. The neutron-proton differences 
are reflected in the values of the coefficients of Eqs. (28) and (29). The first two variables 
of these equations involving the terms Z/All3 and n as the predominant terms are about 
equally significant and they account for the major effects, with their multiple corre- 
lation coefficient ~0.92. 

The nuclear systematics obtained from Eqs. (28) and (29) (see Figs. 1 and 2) show 
the distinctiveness of the single-particle states, the increase in binding energies as A 
increases, and the tendency to level off for deeply bound states in heavy nuclei, 
thus exhibiting the saturation property of nuclear forces. Both the neutron and proton 
systematics show gaps in the shell structure at all the observed magic numbers. Gaps 
are also exhibited for all the semi-magic numbers in the appropriate region. A gap 
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is seen for the semi-magic number 58, but because of level crossings, it does not occur 
at the Fermi level. The systematic3 seen in Figs. 1 and 2 thus satisfactorily reproduce 
the expected trends in the nuclear systematics. 

Calculated and experimental single-particle energies are listed in Table I. There 
is generally a reasonable agreement with the experimental data[[21-301. Nevertheless, 
it seems appropriate to make a few remarks on the discrepancies that one may observe 
in comparing the results of this work and the experimental data. They are partly due 
to the errors associated with the experimental data themselves. The experimental data 
available are rather imprecise and for deeply bound states they do not exist in most 
cases. Those data which are availbable have large errors and sometimes uncertainty 
in the existence of the states reported. The spin-orbit degeneracy is not removed in 
a good number of experiments. The single-particle energies obtained from various 
experiments for a given nucleus sometimes differ appreciably. For example, the 1s 
proton state in 40Ca is reported to be 49.1 f 12 and 77 f 14, 58.4 & 3.4, 56.0 MeV 
in (p, 2~) [22] and (e, e’p> [23, 29, 301 reactions, respectively. Another example of the 
inconsistency in the experimental data is that the single-particle energy for a given 
state, as expected, does not increase, in general, as A increases in a good many cases. 
The pllz proton energies in 12C and la0 are 15.9 & 1 and 12.7 f 1.4 MeV, respectively 
[21]. A similar discrepancy is observed in 58Ni and lzoSn (see Table I) for 1s protons 
and in 28Si (12.5 -J= 1.7 MeV) and 32S (9.5 f 1.4 MeV) for 2s protons [21]. As to the 
calculated single-particle energies, they are generally too low for unoccupied or 
partially occupied levels and the 2s,,, calculated values are rather high for nuclei 
in the region 44 < A < 65, which may be attributed to the input data which were 
used mostly for occupied bound states. As seen from the figures and tables, however, 
the model-independent, semiempirical, neutron and proton single-particle energy 
formulas, given by Eqs. (28) and (29), give a rather good description of the overall 
patterns observed in the bound-state spectrum. These formulas should not be expected 
to give realistic results for states above Fermi surface. 

APPENDIX A: REGRESSION EQUATION AND COEFFICIENTS 

A sequence of multiple linear equations in a stepwise manner is given here along wih 
the multiple correlation coefficient R of each equation. At each step, as a variable is 
added the value of the multiple correlation coefficient R is increased until the most 
significant set of nuclear parameters is included and/or a reasonable value of R (close 
to unity) is reached. First, the neutron energy formulas and their corresponding values 
of R are listed, and then those for protons. The coefficients of all terms in these 
formulas have units in MeV. 

E,(n) = -36.335 + 29.5451/A113, (All) 
R,(n) = 0.4870; 

E,(n) = -83.800 + 59.1661/A’/3 + 120.647r~/Al/~, (A1.2) 
R,(n) = 0.9552; 

581/28/r-6 
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E,(n) = -85.919 + 59.6221/A113 + 88.039n/A1/3 + 8.207n, 
R,(n) = 0.9795; 

E,(n) = -88.510 + 78.1471/A1/3 + 100.363r~/Al/~ + 6.385n 
- 16.103j(j + 1)/A2/3, 

R,(n) = 0.9904; 

E,(n) = -94.474 + 76.9331/A113 + 97.753n/A113 + 14.789n 
- 14.9615(5 + 1),‘A2j3 - 2.090n2, 

R,(n) = 0.9926; 

E,(n) = -94.905 + 70.8361/A1/3 + 89.992n/A1i3 + 17.956n 
- 18.037j(j -+ l)/A23 - 2.573n2 + 43.2901(1 + 1)/A, 

R&i) = 0.9938; 

E,(p) = -36.263 + 33.7681/A113, 
R,(p) = 0.5439; 

E,(p) = -74.454 + 55.7721/A113 + 23.768n, 
R,(p) = 0.9116; 

E,(p) = -84.756 + 62.9961/A113 + 15.478~1 + 63.778n/A1/3, 
R,(p) = 0.9792; 

E,(p) = -87.843 + 83.0361/A1j3 + 13.568 + 78.331n/A113 
- 18.287j(j + 1)/AZi3, 

R,(p) = 0.9941; 

E,(p) = -95.020 + 82.3821/A113 + 24.02On + 76.284n/A1J3 
- 17.54Oj(j + 1)/A2i3 - 2.954n2, 

R,(p) = 0.9956; 

E,(p) = -100.515 + 82.5511/A1/3 + 30.147n + 58.962n/A1/3 
- 17.741j(j + 1)/A213 - 3.722n2 + 39.6492/A4/3; 

R,(p) = 0.9961. 
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